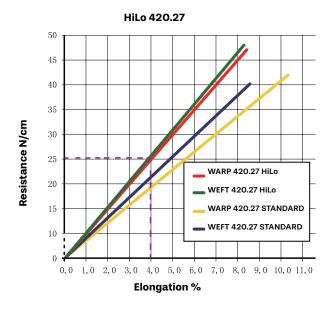


## Hi-Lo® Mesh

Extreme Low Elongation Mesh For High-End Electronics Printing

SAATI HiLo is a super high modulus monofilament polyester mesh. It was developed specially for tight tolerance printing to fabricate high tech products, including touch screen panels, solar cells, and membrane switches.

SAATI uses a special fiber whose polymeric structure gives extraordinary physical & mechanical properties to the product:


- 1. Higher dimensional stability
- 2. Extremely low mesh relaxation
- Plasma-activated surface for enhanced stencil adhesion

### **Key Product Characteristics**

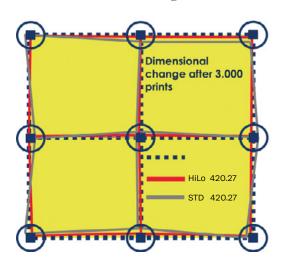
- Top Print Quality
- · Less tension loss during the print run
- Consistent performance during printing results in process reliability improvements
- Finer line Resolution
- · Improved Ink Flow
- Superior Stencil Adhesion: less stencil breakdown and printing life far longer than conventionally treated fabrics

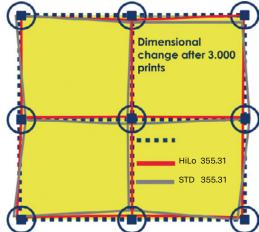


### **Elongation Statistics**





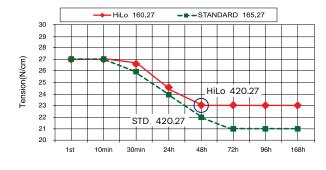

The HiLo Warp & Weft overlapping is almost perfect. At 25N tension level the HiLo 140.31 Elongation Percentage is around 3%, whereas the 165.27 is around 4%.

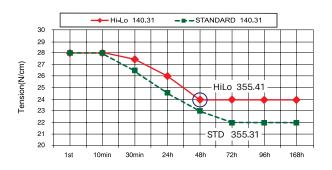



# Hi-Lo® Mesh

Extreme Low Elongation Mesh For High-End Electronics Printing

#### **Dimensional Change**




Extremely low mesh relaxation guarantees:

- Low tension loss after stretching
- Mesh ready to use in less time, as it can be brought to required tension quicker
- Printing quality
  consistency and
  improved ink flow during
  all production run

#### **Tension Loss**





| Availability Of SAATI HiLo Mesh |                 |       |              |           |           |                 |
|---------------------------------|-----------------|-------|--------------|-----------|-----------|-----------------|
| Mesh Count                      | Thread Diameter | Weave | Mesh Opening | Open Area | Thickness | Theoretical Ink |
| (cm/in)                         | (µm)            |       | μm           | %         | μm        | Volume (cm³/m²) |
| 165/420                         | 27              | PW    | 29           | 23        | 42        | 9.6             |
| 150/380                         | 31              | PW    | 30           | 21        | 43        | 8.7             |
| 140/355                         | 31              | PW    | 35           | 25        | 45        | 10.8            |
| 120/305                         | 34              | PW    | 43           | 26        | 53        | 14.1            |
| 165/420                         | 24              | PW    | 32           | 28        | 38        | 11.0            |
| 180/460                         | 24              | PW    | 28           | 26        | 37        | 9.5             |